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1. Summary of Progress 

Remote sensing approach to monitoring post-fire vegetative recovery 

The project aims to develop new remote sensing tools for forest managers to undertake risk 

assessments and subsequently plan and report on post-fire ecological recovery.  A key component of 

our research is to develop a method that measures the proportion of vegetative regrowth relative to 

the unburnt or pre-fire state, with the view to possible integration with the DPIE-RFS semi-

automated fire severity mapping system (FESM). These data products would be aimed at suiting an 

ongoing monitoring framework and would provide post-fire recovery data over longer timescales. 

Our work so far has focused on how best to define the pre-fire state and developing programming 

code to allow repeatable rapid processing and analysis of candidate recovery indices. Our 

exploration of candidate indices will continue as field data is captured for quantitative comparisons. 

Fire severity derived products - unburnt refugia  
In order to support land managers in post-fire recovery decisions and prioritisation of resources 

immediately following fire events, we have also been developing a set of example decision support 

products derived from FESM severity maps. In the past few months, we’ve harnessed an opportunity 

to work closely with NPWS executives, to build and deliver a proof of concept case study of historical 

fire severity and derived spatial products, as well as statistical analyses to help inform recovery 

planning and potential indicators of ecological resilience. The work focused on building the historical 

severity mapping archive for the Blue Mountains and subsequently analysing landscape patterns in 

short-term and long-term unburnt refugia. Preliminary results are provided here, but we look 

forward to continuing collaborations with senior NPWS managers to improve the post-fire recovery 

decision support products and applications. 

TLS acquisition 
In August 2020, the DPIE Remote Sensing and Regulatory Mapping team acquired a terrestrial laser 

scanner. The TLS instrument will provide high density point clouds to generate high resolution 3D 

images of forest structure and biomass. This will provide a valuable contribution of quantitative field 

measurements and allow for high precision repeated measures across time. We have leveraged 

significant in-house expertise through the joint remote sensing research program, particularly with 

our research partner Dr Nick Goodwin, in developing data management protocols and automated 

workflows for file naming conventions, data storage, pre- and post-processing and analysis. We have 

adapted our fieldwork plans for this project to extensively use the TLS, as this will provide field data 

of far greater precision and quality than our previously proposed field methods. The investment in 

building our TLS data capture, management and processing protocols will provide enduring benefits 

for this project.  

Scheduled Fieldwork Delays 
Since our project’s inception in October 2019, we have experienced the unprecedented 2019/20 

summer bushfire crisis which put considerable demand on the project lead, Rebecca Gibson, due to 

DPIE corporate requirements for rapid response severity mapping (FESM). The bushfire crisis was 

closely followed by the COVID-19 pandemic which saw DPIE offices closed as we were required to 

work from home from April 2020. Field work restrictions have now eased to allow approval of field 

trips where necessary for critical business. New DPIE COVID-safe protocols for fieldwork restrict 

passengers in a vehicle to a maximum of 2. In some cases, the demand for departmental vehicles 

out-strips supply, causing logistical difficulties. Despite the challenging circumstances, we have made 

progress with field work and will continue to focus on setting up sites for repeated measures, to 

ensure 2 to 3 site revisits can be accomplished before November 2021. 



2. Landsat historical severity mapping - algorithm development and testing 

Background 

Building the historical severity archive to retrospectively map past fires using Landsat imagery has 

been part of the long-term goals of the FESM project. The first step toward this outcome was to 

modify and test the original Sentinel 2 based algorithm to suit Landsat satellite imagery. Here we 

present the results of this work, with comparison of performance between the algorithms. This work 

has been essential in supporting the research for the post-fire recovery project, to allow severity 

mapping of historical fires as the starting point in assessing methods of monitoring long-term post-

fire recovery. 

Method 
In developing the original Sentinel 2 FESM algorithm, we considered future application onto Landsat 

imagery was likely. As such, the Sentinel 2 input imagery was pre-processed into a ‘Landsat TM - like’ 

configuration to allow for backward compatibility with Landsat. However, preliminary attempts to 

apply the Sentinel 2 algorithm directly onto Landsat imagery without modification had limited 

success. Sentinel 2 differs slightly in the configuration of bandwidths compared to Landsat OLI 

(Landsat 8). Likewise, Landsat OLI differs slightly in bandwidths compared to Landsat TM (Landsat 5 

and 7). There was enough difference between these sensors to produce noisy output in the random 

forest supervised classification, producing low prediction accuracy. Therefore, the algorithm has 

been modified and trained separately to suit each specific sensor.  

See Gibson et al (2020) for further details on the method of FESM supervised classification using a 

random forest machine learning framework. The severity classification definition is provided here 

(Table 1). 

Table 1 FESM severity class definitions 

Severity class Description % foliage fire affected 

Unburnt Unburnt understory and unburnt canopy 0% canopy and understory burnt 

Low Burnt understory with unburnt canopy >10% burnt understory 

>90% green canopy 

Moderate Partial canopy scorch 20-90% canopy scorch 

High Full canopy scorch (+/- partial canopy 

consumption) 

>90% canopy scorched 

<50% canopy biomass consumed 

Extreme Full canopy consumption >50% canopy biomass consumed 

 

Results 
High resolution aerial photographs were used to develop the severity class training samples, which 

were then used for extracting the spectral information from the satellite imagery to train the 

supervised classification, specific to each different sensor. Due to the different mission date ranges 

of the satellites, some fires training data have been able to be used in multiple sensor-specific 

algorithms (Table 2). 

 

 

 

 



Table 2 Fires and corresponding aerial photography used to train sensor-specific algorithms for 
supervised classification of fire severity. 

Fire name 

Fire start 

date 

Aerial photo 

date 

Aerial photo 

resolution (cm) 

Training data used for sensor-specific algorithm 

Sentinel 2 Landsat OLI 8 Landsat TM 5 and 7 

Sir Ivan 20170217 201702 50 yes yes no 

White Cedars 20170212 201702 20 yes yes no 

Wollemi 695 20180128 201803 50 yes yes yes 

Mt Canobolas 20180210 201803 30 yes yes no 

Sir Bertram 20180120 201803 50 yes yes no 

Pilliga 20180119 201803 50 yes yes yes 

Tathra 20180318 201803 10 yes yes yes 

Holsworthy 20180413 201804 50 yes yes no 

Port Stephens 20131013 201310 10 no no yes 

Springwood 20131017 201310 10 no no yes 

Wambelong 20130112 201301 50 no no yes 

Wyong 20131017 201310 10 no no yes 

Yarrabin 20130106 201301 20 no no yes 

 

Table 3 Averaged Balanced Accuracy and Kappa statistics 

FESM class FESMv2 Sen2 FESMv2 L8 

Unburnt 0.975 0.959 

Low 0.827 0.861 

Moderate 0.655 0.669 

High 0.836 0.787 

Extreme 0.909 0.895 

Kappa 0.718 0.709 

Overall accuracy 0.80 0.82 

 

The same set of 8 case study fires were used to train both the Landsat OLI and Sentinel 2 algorithms. 

These cases have been used in a systematic cross-validation analysis to compare the algorithm 

performance between sensors, provided in appendix Table 13 Balanced Accuracy and Kappa statistics 

for predictive models for each fire.Table 13, with the averaged results in Table 3. The results indicate 

comparable accuracy across fire severity classes between Sentinel 2 and Landsat 8 sensor-specific 

algorithms. Both models have kappa scores above 0.70, indicating equally robust overall 

performance. Extensive interpretation of the severity maps generated by alternative sensor-specific 

algorithms have also been assessed against high resolution post-fire aerial photography (see Figure 

1). In some cases, the larger pixel size of Landsat compared to Sentinel 2 pixels (30m vs 10m) slightly 

improved the classification of low severity under sparse canopy, for example in the Pilliga. This key 

finding will be further considered in future revision of texture metrics of the Sentinel 2 algorithm. 

The FESM operational system has been updated to accommodate the different sensor platforms 

with automated application of each appropriate training dataset. 

 

 



 

     

Figure 1  Visual comparison of high-resolution post-fire aerial photography (a), sentinel 2 (b) and Landsat 8 (c) sensor-specific severity classifications

a b c 



3. New tools for risk assessment and post-fire ecological recovery planning 

Background 

We have recently been involved in a package of work at the request of the NPWS Deputy Secretary 

and senior management for a rapid assessment of the effects of fire on reserves within the Blue 

Mountains area, with a view to informing appropriate indicators used to measure ’ecological health’ 

(perhaps better defined and quantified as ecological resilience). Although this case study was not in 

the original scope of work for this research project, the objectives closely align so the time 

investment was considered mutually beneficial and complementary. Directly working with senior 

land managers to craft fit-for-purpose tools derived from remote sensing of fire is a major benefit to 

the outcomes of our project. 

Existing indicators of effects of fire focus on fire frequency, time since last fire and inter-fire interval 

as a measure of whether the fire regime is appropriate for the ecosystem. The measurement of 

other variables such as severity and patchiness may provide improved understanding of the impacts 

and response of flora, fauna and ecosystems to fire. Unburnt patches within a fire extent may act as 

refugia, facilitating survival and persistence of species. However, patchiness and edge effects may 

have contrasting values depending on the ecological context. For example, high edge density (i.e. 

high patchiness of unburnt refugia) may increase habitat suitability for some animal species (e.g. it 

may increase their ability to use and/or recolonise burnt areas). In contrast, high edge density can 

increase predation rates, depending on the species.  

There is uncertainty about the appropriate scale at which unburnt mosaics should be maintained, 

and this will vary between ecosystems. Furthermore, it is unlikely that the unburnt patch 

configuration resulting from a single fire event will provide robust information about ecological 

resilience. However, long unburnt refugia over 10, 20 and 30 years may provide more significant 

insights.   

Method 

Fire severity derived products - unburnt refugia  

The first major component of this case study was to map historical severity for the Blue Mountains 

study area. The previously completed work in adapting the sentinel 2 FESM algorithm for application 

on Landsat imagery was the prerequisite that allowed the Blue Mountains archive from 1989 to 

2020 to be mapped. Fire year mosaics were produced by compositing the individual severity maps in 

each fire year. A binary reclassification of the FESM severity classes was made to represent burnt 

canopy and unburnt canopy (see Table 4, Figure 2).  Using the burnt canopy fire year mosaics, time 

since canopy fire and canopy fire frequency products were subsequently generated.  

Table 4 Class definitions and relationship between FESM severity classes and the burnt canopy 
binary reclassified product. 

FESM Burnt Canopy Binary Reclassification 

Label Description Pixel value Label Pixel value Description 

Unburnt Unburnt understory with 
unburnt canopy 

0 Canopy 
unburnt 

0 Unburnt or low severity 

Low Burnt understory with 
unburnt canopy 

2 

Moderate Partial canopy scorch 3 Canopy 
burnt 

1  All canopy level fire 
combined, from partial 
scorch to full consumption 

High Full canopy scorch  4 

Extreme Full canopy consumption 5 



    

Figure 2 Comparison of a single location mapped by the FESM severity classes (a) and the burnt canopy binary reclassified product (b).



Results 

Landscape pattern analysis of patch metrics 

Landscape ecology research tools are well established in the literature and available for quantitative, 

spatial analysis of landscape patterns such as habitat fragmentation. Fragmentation statistics have 

been widely used in the literature, with standard formulas implemented in various software library 

packages, including R (‘landscapemetrics’) and python (‘PyLandStats’) as well as standalone 

opensource software (‘FRAGSTATS’).  

For the Blue Mountains rapid assessment case study, I used FRAGSTATS calculated by NPWS Estate 

for relative comparisons. For demonstration of the concept and potential applications, I selected a 

set of standardized metrics to allow comparisons among landscapes with different total areas, with 

simple, intuitive interpretations (Table 5) and applied them to each NPWS estate for the 2019/20 

fire year (Figure 3) as well as for the 10, 20 and 30 year fire frequency composites (not presented 

here). 

Table 5 A selection of FRAGSTAT metrics used in the Blue Mountains case study. 

FRAGSTAT metric Definition Behaviour of statistic 

Proportion of landscape Area in hectares of class i (i.e. unburnt canopy) Simple absolute measure  

Patch density (n/100ha) Number of patches of class i per 100 hectares.  
Increases as the landscape gets 
more patchy.  

Edge density (m/ha) the sum of all edges of class i 
Increases as the landscape gets 
more patchy.  

Distance between patches 
(coefficient of variation in 
Euclidean nearest 
neighbour distance) 

The ratio of the standard deviation to the mean 
(a dimensionless number).  
Euclidean geometry is the shortest straight-line 
distance between the focal patch and its 
nearest neighbour of the same class. 

Approaches 0 as distance 
decreases, i.e. patches are more 
aggregated. Increases as distance 
between patches increases, i.e. 
patches are more isolated. 
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Figure 3 FRAGSTAT metrics used, applied to each NPWS reserve for the 2019/20 fire assessment in 
the Blue Mountains case study. 

Interpretation and further refinements  

The results so far demonstrate the application of fragmentation statistics for understanding 

landscape patterns in unburnt patch configuration following a single fire, as well as long unburnt 

refugia across several decades of fire impacts. However, the interpretation of how these metrics 

contribute to understanding the impacts and response of flora, fauna and ecosystems to fire is less 

clear. While comparisons between reserves may assist in resourcing decisions, the suitability of 

these landscape metrics for conservation management decisions requires further refinements to 

provide an ecological context to support conservation management decisions at the landscape scale.  

Further work is planned for the next few months to address minor data quality refinements (to add 

fire start date details for missing fires in the historical archive) and reprocess finalised file formats of 

the fire year mosaics, fire frequency and TSF products. Then we will provide some improved 

ecological context by intersect unburnt canopy products with vegetation formation and topographic 

position (i.e. ridge, gully, slope) and re-running the landscape pattern statistical analyses. Further 

integration of this research into our broader post-fire recovery monitoring framework will aim to 

provide quantitative evidence and further understanding of the effect of unburnt canopy patchiness 

on ecological resilience.  

  



4. Exploration of candidate spectral recovery indices and techniques 

Background 
One of the key objectives of our project is to develop a remote sensing method that estimates the 

proportion of vegetative regrowth since a forest fire event relative to the unburnt or pre-fire state, 

at regular post-fire intervals to support a monitoring and reporting framework. In exploring 

reflectance indices from passive optical sensors, post-fire recovery rates will represent the change in 

reflectance values of the upper-most vegetation layer, without attempting to separate canopy from 

sub-canopy components. This is often assumed to represent the tree canopy but may involve a 

mixture of reflectance signal from canopy and sub-canopy components, depending on the structural 

composition and canopy density.  

A wide range of previous literature exists on the performance of various spectral vegetation indices 

in remote sensing post-fire recovery studies. The commonly used normalised burn ratio (NBR) index 

is a ratio of the near infra-red (NIR) to a shortwave infrared (SWIR) band. This index has been 

demonstrated to have greater sensitivity to finer changes in vegetation cover after disturbance over 

longer recovery timeframes compared to other common vegetation indices such as NDVI. A 

modification of the traditional NBR index has also been developed to compare the two SWIR bands 

instead of the NIR, known as NBR2, and appears to fluctuate less with annual variation in vegetation 

and soil moisture and represents longer term recovery trends than NBR (Hislop et al 2018; Table 6).   

Spectral indices are unitless values that do not directly measure any biophysical property. As such, 

indices measuring the relative cover of photosynthetic, non-photosynthetic material and bare 

ground (i.e. sub-pixel unmixing models) may provide a more appropriate remote sensing surrogate 

to estimate the change in biomass due to fire compared to traditional reflectance-based estimates. 

Although not widely applied in post-fire recovery studies, this may be due to data availability and the 

complexity of building a robust sub-pixel unmixing model using widespread and high-quality field 

calibration data.  In the preliminary exploration of spectral recovery indices and techniques, we have 

initially focused on NBR and fractional cover-based indices. This does not preclude other reflectance-

based index options we may still examine. 

In estimating a measure of ecological resilience, a critical component of the methodology is defining 

the pre-fire state to assess the magnitude of perturbation and rate of recovery back to the pre-fire 

baseline. There is added complexity in defining the pre-fire baseline within a rapidly changing 

climate. For example, altered seed bank dynamics and reduced growth rates with increased fire 

frequency and declining moisture availability may slow forest recovery or prevent the complete 

recovery of forest height and structure to the pre-fire state. Therefore, defining an alternative stable 

state may be required. Another methodological challenge will be taking account of subsequent 

disturbance prior to full recovery, which is likely to become more common as fire frequency is 

projected to increase in the future.   

Another key challenge when using multitemporal imagery to monitor vegetation change is to 

identify the relevant features of a time series while dismissing noise introduced by ephemeral 

changes in illumination, phenology, atmospheric condition and geometric registration. Calibration 

data from unburnt reference pixels that are monitored alongside the fire affected area can be used 

effectively as a phenological offset, to control for sources of noise and better represent the change 

due to post-fire recovery. Here we summarise our preliminary exploration of contrasting methods to 

define the pre-fire state and the effect of applying an unburnt reference calibration. 

 



 

Table 6 Mean values for common greenness and wetness indices from five years prior to fire to nine 
years post-fire (Hislop et al 2018), including NDVI (normalised differenced vegetation index), SAVI 
(soil adjusted vegetation index), TCG (Tasselled Cap Greenness), TCA (Tasselled Cap Angle), NBR 
(normalised burn ratio), NDMI (normalised differenced moisture index), TCW (Tasselled Cap 
Wetness) and NBR2. 

Preliminary Method and Results 

Candidate indices 

We examined the variation in NBR and fractional cover values for imagery across several years 

before and after a fire event, within the prism of different severity classes. Data from one fire 

presented here, White Cedars in 2017, demonstrates the consistent pattern observed at a wide 

range of other case study fires. Inter-annual variation in rainfall and temperatures cause fluctuations 

in the NBR and fractional cover values, with a notable drop in NBR and green fractional cover and a 

corresponding increase in dry and bare cover just after July 2016, which was the start of significant 

drought conditions in the central west. This was shortly followed by a similar pattern seen in early 

2017, just prior to the fire start date (Figure 4 and Figure 5).  



 

Figure 4 Example of the variation in NBR timeseries pre and post-fire. 

 

Figure 5 Example of the variation in fractional cover timeseries pre and post-fire, for bare, dead 
(non-photosynthetic) and green (photosynthetic) fractions. 



Pre-fire state definitions 

We examined the effects of 2 contrasting methods of defining the pre-fire state. The first method 

uses a dense stack timeseries statistics tool, ‘ffract’ developed by Dr Jim Watson, and compares the 

medoid seasonal fractional cover for a selected statistic (e.g. mean, max, standard deviation, 

coefficient of variation and others) of the 2 years preceding the fire to the 1 year preceding the 

target year of assessment. Medoid is similar to mean but is the value that has minimal average 

dissimilarity from all object in the cluster and is robust to outliers, thereby reducing noise and 

variance.  For a post-fire monitoring tool to assess vegetative recovery at given time-steps, using a 

statistic such as the mean across an entire year preceding the target year of assessment may reduce 

the sensitivity of the method to detect finer scale changes on shorter timeframes.  

Given this potential limitation, an alternative approach was investigated, based on the selection of 4 

cloud free images restricted to the season the fire occurred in. The pre-fire state was calculated as 

the average of 4 images from the preceding 2 years, in the season the fire occurred in, and 4 images 

in the season the fire occurred for the target year of assessment.  

In both methods, the Relative Recovery Index (RRI) is a pixel-wise calculation of the change between 

pre and post-fire, relativised to the pre-fire pixel, where a value of 0 indicates no change compared 

to the pre-fire baseline; positive values indicate an increase in the index value relative to the pre-fire 

state, and negative values indicate a decline in the index value relative to the pre-fire state:  

(1) RRI = (post-fire– pre-fire)    

      pre-fire  

To demonstrate the preliminary assessment, presented here is the results for 1, 2 and 5 years post-

fire for the Warrumbungles fire in 2013, grouped by fire severity class; low (burnt understory, 

unburnt canopy), moderate (partial canopy scorch), high (full canopy scorch) and extreme (full 

canopy consumption) for the ‘ffract’ timeseries (Figure 6) and the 4 image average methods (Figure 

7).  

 



Figure 6 Relative recovery index using the ffract method for 1-, 2- and 5-years post-fire by fire 
severity class. The violin density plots show the distribution of the data, with 25%, 50% and 75% 
quantile lines. 

 

Figure 7 Relative recovery index using the 4-image average method for 1-, 2- and 5-years post-fire by 
fire severity class. The violin density plots show the distribution of the data, with 25%, 50% and 75% 
quantile lines. 

The effect of fire severity on the Relative Recovery Index is consistent and logical between the two 

methods, and across time-steps, whereby the higher severity classes had larger post-fire declines in 

mean green values (or increase in the case of bare fraction, not shown here). In each severity class, 

there was an incremental return towards the pre-fire baseline (i.e. 0), with larger inter-annual 

differences for the higher severity classes compared to the lower severity classes. 

The preliminary results suggest the much larger volume of images, and the medoid used to calculate 

the ‘ffract’ timeseries statistic may the reduce noise and variance observed in the 4-image average 

method. We will continue to explore different configurations of these methods, for example, the 

effect of using the dense stack timeseries to define the pre-fire state, compared to the post-fire 

average of 4 images taken in the season the fire occurred for the target year of assessment, and 

taking the medoid rather than mean of the 4 images. 

Unburnt reference calibration 

Unburnt reference calibration may be used in remote sensing of vegetation change to reduce noise 

and variation due to phenological and seasonal effects. For example, a phenological offset of 

unburnt training data is incorporated into the automated processing workflow of the FESM system. 

Using the ffract timeseries and the 4 image average methods, we generated the Relative Recovery 

Index for the same unburnt reference area used in the FESM model to capture unburnt training data. 

In all years, there was considerably higher variation in the 4-image average method, compared to 

the ffract method. However, both methods show that all years had a lower mean green value in the 

unburnt reference relative to the pre-fire state, with year 1 having a relatively greater decline.   



  

 

Figure 8 Relative recovery index for mean green fraction in the unburnt reference using the ‘ffract’ 
timeseries method 

 

Figure 9 Relative recovery index for mean green fraction in the unburnt reference using 4 image 
average method 

Further work will investigate possible refinements in better defining a representative unburnt 

reference location and the implications of different method options for applying a calibration 

correction. Validation against quantitative TLS field data will help to better understand the 

performance of different approaches. Further work will also target questions around the 

methodological implications of defining when a system is ‘recovered’ to either the pre-fire state or 

an alternative stable state.   



5. Exploration of candidate radar recovery indices and techniques 

Background 
One of the aims of our project is to evaluate the use of radar derived indices for post-fire recovery 

monitoring.  As a first step, we’ve used intensity differencing of pre- and post-fire Sentinel-1 data to 

test its performance in burnt area and fire severity mapping, using a random forest machine learning 

framework (i.e. the method used by FESM severity mapping). This will provide independent testing 

on quantified known measures of immediate post-fire effects on vegetation. This assessment will 

also have the benefit of scoping the potential for radar to be used in a rapid response severity 

mapping approach. As radar can penetrate cloud and smoke, this may help to overcome limitations 

of optical sensors, to potentially map fires progressively while they still burn, which was requested 

by DPIE executives of the FESM system during the extreme fire season of 2019/20.  

The approach is being tested using Sentinel-1 C-band radar.  C-band is a short wavelength (~5.6 cm) 

with limited penetration of dense vegetation canopies.  Penetration depth depends on vegetation 

type and growth stage and is typically greater at longer wavelengths.  Through our research 

networks, we are trying to secure access to longer wavelength L-band data (~24 cm wavelength) 

from the ALOS-2 PALSAR-2 so we can apply similar analyses.    

The second step will be to determine the sensitivity of a radar time-series approach in detecting 

post-fire recovery for different fire severity classes and vegetation cover types. Time-series 

processing of monthly Sentinel-1 data acquired from January 2019 onwards is underway and 

exploratory metrics will be investigated in the next quarter. Batch processing is being implemented 

on DPIE’s high performance computing system (SDC) for rapid processing of time-series data and 

integration with existing file storage and naming conventions.   

Method 

Pre- and post-fire intensity differencing  

Sentinel-1 GRDH (ground range detected high resolution) data were acquired for 8 recent past 

wildfires (see Table 1, Gibson et al 2020). The data were orthorectified and radiometrically 

calibrated to gamma0 using ESA’s SNAP v7.0 software.  Pre- and post-fire images were differenced 

and clipped to the extent of each site. Input index values were extracted from API samples and for 

each severity class, which forms the training data for the supervised classification. Dr Michael Chang 

(Macquarie University) assisted in the analysis. The results for White Cedars and Pilliga fires are 

presented here.  

Independent and combined fire severity models  

Using a cross-validation framework with independent training and validation data, we have 

systematically compared multiple indices derived from optical, radar, and secondary texture indices 

across different pixel window sizes (Table 7). We also compared the integration of radar and optical 

data in combined models. Here we present the results for the White Cedars fire, which uses data 

from 7 other case study fires to train the models, tested against independent data from the target 

White Cedars fire. 

Balanced accuracy statistics are reported, as well as overall accuracy and Kappa values, which 

determines the statistical agreement between the model and the validation data and allows 

comparative performance between models. For each model and the full model including all input 

indices, we calculated the mean decrease in Gini (Gini impurity criterion), which measures the 

similarity of a given element with respect to the rest of the classes and is used to find the best split 



selection at each node of the random forest decision tree. The mean decrease in Gini was ordered 

from highest to lowest, to subsequently rank the input indices according to variable importance. 

Results 

Initial observations  

Of the two polarizations, VH polarization appears more useful for detecting the burnt area and 

shows higher sensitivity to fire severity. VH backscatter is typically dominated by volume scattering 

between small vegetative components (leaves, twigs) in the upper canopy. Typically the magnitude 

of pre- and post-fire intensity difference at VH and VV polarizations increases as fire severity 

increases. Exceptions were observed at some sites (e.g., Tathra Wollemi) with similarly high mean 

VH intensity difference with fire severity class. Unburnt samples show limited change in intensity as 

expected.  

 

 
Figure 11 Sentinel-1A pre (6/2/2017) and post-fire (18/2/2017) gamm0 and pre-minus-post VH and 

VV intensity difference at White Cedars. Scatter plot of mean Sentinel-1 intensity difference for fire 

severity classes. 



 

 

Figure 12 Sentinel-1A pre- (8/1/2018) and post-fire (1/2/2018) gamma0 and pre-minus-post VH and 

VV intensity difference at Pilliga. Scatter plot of mean Sentinel-1 intensity difference for fire severity 

classes.  

 

 

 

 



Fire severity model performance 

The results of the radar model indicate relatively poor performance in predicting severity classes, 
with 63% overall accuracy and 0.31 Kappa (Table 8). Kappa values <0.4 are considered to be poor. 
However, there was reasonable accuracy for the extreme severity class, with 85% balanced 
accuracy. When radar input indices were combined with SWIR derived indices, the model improved 
substantially, with 75% overall accuracy and 0.54 Kappa and an improved accuracy for high and 
extreme severity classes (79% and 98% respectively, Table 8). SWIR bands have been demonstrated 
in previous research to penetrate the atmospheric column even when aerosols such as smoke are 
present (but not cloud). 

The optical model and the ‘top 20 combined’ model were very similar in performance metrics and 
included a similar set of input indices. However, the Radar – VH dissimilarity texture index (11 pixel 
window) was ranked 15 in variable importance in the full model, just 1 position lower than the very 
commonly used fire severity index, the dNBR (Table 9). Furthermore, several other Radar -VH 
derived texture indices (contrast, homogeneity and 2nd moment for 11-pixel windows) were ranked 
higher than the variance in dNBR (5-pixel window). Notably, the SWIR derived indices were 
consistently ranked higher than many of the other optical input indices that are used in the current 
FESM model, which provides significant insights towards improvements in future versions of FESM. 

Initial comparisons of all 8 historic sites has revealed large differences in the sensitivity of pre-minus-

post VV and VH polarizations to fire severity. Topography and rainfall may be influential factors on 

performance, as well as canopy openness.  Understanding the reasons for these differences is the 

subject of ongoing work.  

  



Table 7 Matrix of variables used in the comparison of models. The base index, texture statistic and 
pixel window size were combined to produce the input indices. 

Sensor type Base index Texture statistic Pixel window size 

reflectance dNBR Mean (mean) 5 

reflectance RdNBR Variance (var) 7 

reflectance SWIR dNBR2 Contrast (con) 11 

reflectance SWIR RdNBR2 2nd moment (2mom)  

fractional cover Total cover  Homogeneity (hom)  

fractional cover Bare cover Dissimilarity (diss)  

radar Radar - VV Correlation (corr)  

radar Radar - VH   

 

Table 8 Comparison of 4 models in the White Cedars cross-validation assessment, showing balanced 
accuracy statistics for each fire severity class, as well as the overall model accuracy and kappa 
statistics. 

 Balanced Accuracy 

severity class top 20 combined optical radar radar + swir 

unburnt 0.9639 0.9622 0.6883 0.7563 

low 0.88686 0.88894 0.4997646 0.52783 

mod 0.84304 0.83231 0.5000564 0.52775 

high 0.90668 0.90899 0.501119 0.79729 

extreme 0.9758 0.982 0.85269 0.9859 

overall accuracy 0.9199 0.9192 0.6355 0.7525 

Kappa  0.8698 0.8684 0.3061 0.5367 

 

 

 

Figure 10 Visual comparison of optical (a) and radar + swir (b) models predicted severity class maps 
for the White Cedars fire 

 

 

a b 



Table 9 Full list of input indices and the relative rank position for each model, based on the mean 
decrease in Gini index. 

Input indices full model Optical only Radar only top radar + swir 

mean_dBare7 1 2 NA NA 

RdNBR 2 1 NA NA 

mean_dBare5 3 5 NA NA 

glcm_SWIR_dNBR2_var_7 4 4 NA 1 

SWIR_RdNBR2 5 6 NA 2 

glcm_SWIR_dNBR2_mean_7 6 3 NA 3 

glcm_SWIR_dNBR2_var_5 7 8 NA 4 

glcm_SWIR_dNBR2_mean_5 8 7 NA 6 

dBare 9 10 NA NA 

Rel_dTotal 10 11 NA NA 

mean_dNBR5 11 12 NA NA 

mean_dNBR7 12 13 NA NA 

SWIR_dNBR2 13 9 NA 5 

dNBR 14 14 NA NA 

glcm_radarVH_dissim_11 15 NA 7 11 

var_dBare7 16 15 NA NA 

glcm_radarVH_con_11 17 NA 5 8 

glcm_radarVH_hom_11 18 NA 11 NA 

glcm_radarVH_2mom_11 19 NA 6 9 

var_dBare5 20 16 NA NA 

glcm_radarVH_var_11 21 NA 2 7 

glcm_radarVV_con_11 22 NA 9 12 

glcm_radarVH_mean_11 23 NA 3 10 

glcm_radarVH_con_7 24 NA 17 NA 

glcm_radarVV_dissim_11 25 NA 15 NA 

glcm_radarVH_dissim_7 26 NA 22 NA 

glcm_radarVV_mean_11 27 NA 1 14 

glcm_radarVV_2mom_11 28 NA 16 NA 

glcm_radarVV_var_11 29 NA 4 13 

glcm_radarVV_hom_11 30 NA 19 NA 

glcm_radarVH_mean_7 31 NA 13 NA 

glcm_radarVH_var_7 32 NA 14 NA 

glcm_radarVH_hom_7 33 NA 24 NA 

var_dNBR5 34 18 NA NA 

var_dNBR7 35 17 NA NA 

glcm_SWIR_dNBR2_2mom_7 36 19 NA NA 

glcm_radarVV_mean_7 37 NA 10 15 

glcm_radarVH_2mom_7 38 NA 23 NA 

glcm_radarVV_var_7 39 NA 12 NA 

glcm_SWIR_dNBR2_con_7 40 20 NA NA 

glcm_radarVV_con_7 41 NA 27 NA 

glcm_SWIR_dNBR2_corr_7 42 21 NA NA 

glcm_SWIR_dNBR2_hom_7 43 22 NA NA 

glcm_radarVV_corr_11 44 NA 21 NA 

glcm_radarVH_corr_11 45 NA 20 NA 

glcm_SWIR_dNBR2_dissim_7 46 23 NA NA 

glcm_SWIR_dNBR2_corr_5 47 24 NA NA 

radar_inputVH 48 NA 18 NA 

glcm_radarVH_corr_7 49 NA 25 NA 

glcm_SWIR_dNBR2_2mom_5 50 25 NA NA 

radar_inputVV 51 NA 8 16 



Input indices Combined model Optical only Radar only top radar + swir 

glcm_radarVV_corr_7 52 NA 26 NA 

glcm_radarVV_dissim_7 53 NA 31 NA 

glcm_radarVV_2mom_7 54 NA 30 NA 

glcm_radarVV_hom_7 55 NA 28 NA 

glcm_SWIR_dNBR2_con_5 56 27 NA NA 

random 57 26 29 17 

glcm_SWIR_dNBR2_hom_5 58 28 NA NA 

glcm_SWIR_dNBR2_dissim_5 59 29 NA NA 

 
  



6. Field Data  

Terrestrial Laser Scanner 
A TLS is an active ground-based system for rapid collection of 3D point clouds of objects.  The TLS 

emits laser pulses towards its target and measures the distance from the device to the target.  The 

intensity of the return pulse is also recorded.  With TLS we can reconstruct the three-dimensional 

forest canopy and assess vegetation dynamics post-fire. The TLS provides rapid and objective 

assessment of forest structure and can be repeated at appropriate time intervals.   

Significant investment of our time in the past few months since acquiring the TLS has been focused 

on technical training and developing protocols to allow for high precision repeat site surveys, data 

management and automating workflows for file naming conventions, data storage, pre- and post-

processing and analysis. We have leveraged significant in-house expertise through our JRSRP 

research partner Dr Nick Goodwin, to implement much of the previously scripted workflows Nick 

and colleagues had developed in QLD (Department of Environment and Science). Ongoing 

development and testing are still taking place to further refine processing efficiencies and data 

analysis output.  

TLS field capture method 
Our standard TLS field method involves the following key components: 

• A single TLS site is comprised of 7 scan positions, with one central scan and 6 scans located at 

33m from the central scan in a star transect configuration (N, NE, SE, S, SW, NW). The 7 scan 

positions are co-registered during processing. 

• Each of the scan positions is comprised of 2 x 360-degree scans (horizontal and vertical), which 

are co-registered as a pre-processing step. 

• To support high precision site revisit data, an underground steel recovery is positioned at each 

scan position and recovered using a metal detector. 

For the post-fire recovery project, 2 TLS sites are paired, with an unburnt (or low severity) site and a 

high (or extreme) severity location in the most recent past fire. The paired sites are assessed as 

closely comparable in terms of proximity, pre-fire canopy height and density and topographic 

position, estimated from pre-fire LiDAR wherever possible. The pairing of sites will be critical to 

provide the unburnt/lower severity reference for relative comparison of the post-fire recovery rates. 

Preliminary TLS data analysis 
Here we present example TLS images and metrics from our 4 test sites. We surveyed 1 site twice to 

examine our revisit accuracy and precision (200722_060219 and 200722_065623). These test sites 

won’t be included in ongoing monitoring as we have further refined our methods for paired site 

selection and repeat capture precision. Using the TLS data from our 4 test site locations, post-

processing analysis using the pylidar python library generated statistics of the diameter at breast 

height (DBH 1.3m) and number of stems (Table 10), plus total cover and total wood volume (Table 

11). Total cover is defined as the fraction of the ground covered by 2D gridded return heights greater 

than 2m, using a grid resolution of 5cm. Volume metrics are computed within 5cm vertical intervals 

with an estimate of diameter for each interval. Visualisation of the maximum height above ground 

(max HAG) for each site is provided in Figure 11. We generated modelled output including estimated 

mean DBH as a function of height (Figure 12), estimated number of stems/branches as a function of 

height (Figure 13), and estimated stem/branch volume as a function of height (Figure 14). Further 

work is currently being undertaken to incorporate statistics of cover as a function of height (i.e. 

canopy height profiles) in our data analysis workflows.  



Table 10 TLS Site statistics, including DBH measures and number of stems. 

 DBH 1.3m  
Site name max mean median sd number of stems 

200722_060219* 0.938 0.114 0.095 0.059 1042 

200722_065623* 0.938 0.113 0.094 0.066 1038 

200723_015553 0.844 0.101 0.078 0.064 1371 

200722_011909 0.883 0.131 0.094 0.093 888 

Table 11 TLS Site statistics, including total cover and total wood volume. 
Site Total Cover (>2m) Total wood volume (m3) 

200722_060219* 0.604 163.258 

200722_065623* 0.604 163.104 

200723_015553 0.892 333.968 

200722_011909 0.824 286.365 

 

 

  

Figure 11 Canopy Height imagery for each TLS site 



 
Figure 12 estimated mean DBH as a function of height for each TLS site. 

 
Figure 13 estimated number of stems/branches as a function of height for each TLS site. 

 

Figure 14 estimated stem branch volume as a function of height for each TLS site. 



Post-fire recovery TLS site locations for repeat surveys 
Site selection has focused on the northern half of NSW to restrict personnel movement during the 

the COVID pandemic. We have commenced setting up permanent TLS post-fire recovery monitoring 

sites (Table 12 and Figure 15), with 2 clusters of paired sites (i.e. 4 sites) in Clouds Creek State Forest 

in the 2019/20 Liberation Trail fire. Our sites in the Shark Creek fire in Yuragir NP have been located 

with site reconnaissance but fieldwork was postponed due to rain. Similarly, fieldwork for the Bees 

Nest fire in Guy Fawkes River NP was scheduled for the 27-28th October but was postponed due to 

rain. Sites in the 3 fires out west in the Pilliga and Mt Kaputar NP will be captured during fieldwork 

scheduled for 3rd – 7th November, with the Mt Nardi sites planned to be captured in mid-November. 

Additional single-visit sites with longer time since fire may be opportunistically captured during our 

site re-visit field trips. 

Several of these TLS sites have been selected due to overlapping objectives with collaborative 

research partners, including Anthea Mitchell’s ALOS regrowth mapping out in the Pilliga, Grant 

Hodgins Old Growth Mapping in Clouds Creek SF, and Mitch Lyons, David Keith and Rob Kooyman’s 

threatened species post-fire recovery work in lowland rainforest in Mt Nardi. 

Table 12 Permanent TLS post-fire recovery monitoring site location details 

Fire name 
Fire start 

date 
Fire End 

date 
Location Cluster Site name x coord. y coord. Fire Severity 

Liberation 
Trail 

4/11/2019 24/12/2019 
Clouds 

Creek SF 

1 200923_122611 465489.580 6667229.070 unburnt/low 

1 200923_154324 465675.300 6666973.640 high/extreme 

2 200924_102321 465560.840 6674291.850 unburnt/low 

2 200924_130236 465791.160 6673915.990 high/extreme 

Shark Creek 13/08/2019 12/10/2019 Yuragir NP 
3 TBC TBC TBC unburnt/low 

3 TBC TBC TBC high/extreme 

Bees Nest 31/08/2019 13/11/2019 
Guy Fawkes 

River NP 

4 TBC TBC TBC unburnt/low 

4 TBC TBC TBC high/extreme 

Mt Nardi 8/11/2019 29/11/2019 
Nightcap 

NP 

5 TBC TBC TBC unburnt/low 

5 TBC TBC TBC high/extreme 

Kerringle 29/11/2006 9/01/2007 
Pilliga East 

CR 

6 TBC TBC TBC unburnt/low 

6 TBC TBC TBC high/extreme 

Dipper Rd 17/01/2018 2/02/2018 Pilliga NR 
7 TBC TBC TBC unburnt/low 

7 TBC TBC TBC high/extreme 

Mt Kaputar 17/10/2019 4/12/2019 
Mt Kaputar 

NP 

8 TBC TBC TBC unburnt/low 

8 TBC TBC TBC high/extreme 

 



  

Figure 15 Permanent TLS post-fire recovery monitoring site locations  



7. Risk/vulnerability modelling  

Satellite time series can be used to track forest recovery over time. Conceptually, this approach 

involves determining when the satellite signal returns to its pre-disturbed level. For optical systems 

like Landsat, this recovery indicator is considered ‘spectral’ recovery, as opposed to structural or 

compositional recovery. However, spectral recovery has been shown to correlate with structural 

recovery and can act as a reasonable proxy for monitoring forest recovery, particularly at the 

landscape scale. Recent research undertaken in Victoria found that spectral recovery length was 

often more strongly influenced by environmental factors rather than the severity of the fire (Hislop 

et al. 2019). 

This sub-task is based on the premise that information about spectral recovery from past fires can be 

harnessed to ‘predict’ future recovery durations, based on knowledge about vegetation type, 

location, fire severity, etc. Initial exploratory analysis of spectral recovery following past fires in NSW 

indicate substantial differences across bioregions (Figure XX). This analysis is based on human 

interpreted reference samples (~1000 randomly assigned 1 hectare patches). Moving forward, the 

aim of this task is to generate predicted maps of recovery duration over the 2019-2020 fire extent. 

This will help to identify vulnerable areas where management interventions may be most beneficial. 

 

 

Figure XX. Boxplots of spectral recovery length in NSW eastern bioregions, as determined by human 

interpretation of Landsat data samples. 

 

 

 



8. Next tasks  
The following section summarises the key tasks we will be focusing on over the next 6 months. 

Fire Severity Derived post-fire ecological recovery decision support tools 

• Continue building the Blue Mountains Case Study  

• minor data quality refinements and reprocess finalised file formats of the fire year mosaics, 

fire frequency and TSF products 

• generate products to enhance the ecological context by intersect unburnt canopy products 

with vegetation formation and topographic position (i.e. ridge, gully, slope)  

• re-running the landscape pattern statistical analyses.  

• investigate quantitative evidence and further understanding of the effect of unburnt canopy 

patchiness on ecological resilience. 

Optical sensor analysis  

• Further explore candidate spectral and fractional cover indices across a wider range of 

vegetation, climate and topographic conditions, 

• Investigate possible refinements in defining a representative unburnt reference  

• Test different method options for applying a calibration correction.  

• Validation of indices against quantitative TLS field data  

• Examine methodological implications of defining when a system is ‘recovered’ to either the 

pre-fire state or an alternative stable state. 

Radar sensor analysis  

• Co-registration and final processing of monthly sentinel-1 time-series and exploration of 

time-series metrics for post-fire recovery 

• Run remaining fire severity models using radar-only, optical-only and combined inputs and 

identify strengths and limitations of each approach   

• Explore potential of dense time-series (weekly) of sentinel-1 for rapid response mapping of 

burnt area extent  

TLS field data  

• Continue setting up permanent TLS monitoring sites 

• Refine post-processing data analysis scripted workflow 

• Conduct preliminary analysis of TLS field data comparisons to satellite-derived relative 

recovery products. 

Predictive post-fire recovery risk modelling 

• Continue building the reference sample database 

• preliminary analysis to generate predictive maps of recovery duration over the 2019-2020 

fire extent 
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Appendix 1 

 

FESM Sentinel 2 vs Landsat 8 algorithm comparison 
Table 13 Balanced Accuracy and Kappa statistics for predictive models for each fire. 

 
FESM 
class 

FESMv2 
Sen2 

FESMv2 
L8 

Ta
th

ra
 

unburnt 0.967 0.970 

low 0.845 0.945 

moderate 0.726 0.771 

high 0.842 0.816 

extreme 0.972 0.854 

Kappa 0.693 0.711 

H
o

ls
w

o
rt

h
y 

unburnt 0.985 0.992 

low 0.798 0.939 

moderate 0.729 0.576 

high 0.763 0.815 

extreme 0.939 0.925 

Kappa 0.6872 0.756 

M
t 

C
an

o
b

o
la

s 

unburnt 0.944 0.958 

low 0.872 0.883 

moderate 0.612 0.748 

high 0.933 0.758 

extreme 0.937 0.866 

Kappa 0.717 0.698 

P
ill

ig
a

 

unburnt 0.998 0.988 

low 0.804 0.877 

moderate 0.592 0.639 

high 0.774 0.902 

extreme 0.605 0.964 

Kappa 0.539 0.891 

FESM 
class 

FESMv2 
Sen2 

FESMv2 
L8 

Si
r 

B
e

rt
ra

m
 

unburnt 0.995 0.994 

low 0.825 0.958 

moderate 0.538 0.884 

high 0.748 0.745 

extreme 0.983 0.711 

Kappa 0.744 0.538 

Si
r 

Iv
an

 

unburnt 0.945 0.885 

low 0.729 0.662 

moderate 0.671 0.609 

high 0.804 0.644 

extreme 0.958 0.954 

Kappa 0.765 0.663 

W
h

it
e 

C
ed

ar
s 

unburnt 0.979 0.996 

low 0.908 0.949 

moderate 0.726 0.756 

high 0.915 0.916 

extreme 0.933 0.960 

Kappa 0.832 0.857 

W
o

lle
m

i6
95

 

unburnt 0.989 0.973 

low 0.831 0.739 

moderate 0.648 0.7682 

high 0.906 0.835 

extreme 0.950 0.925 

Kappa 0.767 0.657 

 

 

 

 

 

 


